Evaluation of Satellite Precipitation Estimates over the South West Pacific Region

Author:

Wild Ashley,Chua Zhi-Weng,Kuleshov Yuriy

Abstract

Rainfall estimation over the Pacific region is difficult due to the large distances between rain gauges and the high convection nature of many rainfall events. This study evaluates space-based rainfall observations over the South West Pacific Region from the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP), the USA National Oceanographic and Atmospheric Administration’s (NOAA) Climate Prediction Center morphing technique (CMORPH), the Climate Hazards group Infrared Precipitation with Stations (CHIRPS), and the National Aeronautics and Space Administration’s (NASA) Integrated Multi-Satellite Retrievals for GPM (IMERG). The technique of collocation analysis (CA) is used to compare the performance of monthly satellite precipitation estimates (SPEs). Multi-Source Weighted-Ensemble Precipitation (MSWEP) was used as a reference dataset to compare with each SPE. European Centre for Medium-range Weather Forecasts’ (ECMWF) ERA5 reanalysis was also combined with Soil Moisture-2-Rain–ASCAT (SM2RAIN–ASCAT) to perform triple CA for the six sub-regions of Fiji, New Caledonia, Papua New Guinea (PNG), the Solomon Islands, Timor, and Vanuatu. It was found that GSMaP performed best over low rain gauge density areas, including mountainous areas of PNG (the cross-correlation, CC = 0.64), and the Solomon Islands (CC = 0.74). CHIRPS had the most consistent performance (high correlations and low errors) across all six sub-regions in the study area. Based on the results, recommendations are made for the use of SPEs over the South West Pacific Region.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference48 articles.

1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. Extreme precipitation in the Himalayan landslide hotspot;Stanley,2020

3. Evaluation and Hydrological Utility of the GPM IMERG Precipitation Products over the Xinfengjiang River Reservoir Basin, China

4. The value of satellite rainfall estimates in agriculture and food security;Dinku,2020

5. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3