Complementary Differences in Primary Production and Phenology among Vegetation Types Increase Ecosystem Resilience to Climate Change and Grazing Pressure in an Iconic Mediterranean Ecosystem

Author:

Giralt-Rueda Juan Miguel,Santamaria Luis

Abstract

Plant primary production is a key factor in ecosystem dynamics. In environments with high climatic variability such as the Mediterranean region, plant primary production shows strong seasonal and inter-annual fluctuations, which both drive and interplay with herbivore grazing. Knowledge on the responses of different vegetation types to the variability in both rainfall and grazing pressure by wild and domestic ungulates is a necessary starting point for the sustainable management of these ecosystems. In this work we combine a 15 year series of remote sensing data on plant production (NDVI) with meteorological (daily precipitation data) and ungulate abundance (annual counts of four species of wild and domestic ungulates: red deer, fallow deer, cattle, and horses) in an iconic protected area (the Doñana National Park, SW Spain) to (i) estimate the impact of intra- and inter-annual variation in rainfall and herbivore pressure on primary production, for each of four main vegetation types; and (ii) evaluate the potential impact of different policy (i.e., herbivore management) strategies under expected climate change scenarios. Our results show that the production of different vegetation types differed strongly in their responses to phenology (a surrogate of the effect of climatology on vegetation development), water availability (rainfall accumulated until the phenological peak), and grazing pressure. Although the density of domestic ungulates shows a linear, negative effect on the primary production of three of the four vegetation types, differences in primary production and phenology among vegetation types increase ecosystem resilience to both climatological variability and grazing pressure. Such resilience may, however, be reduced under the conditions predicted by climate change models, if the moderate predicted reduction in rainfall levels combines with moderate to high densities of domestic ungulates, resulting in important reductions in primary production that may compromise plant regeneration, leading to irreversible degradation. New management strategies taking advantage of habitat heterogeneity and phenological alternation, more flexible stocking rates, and the redistribution of management units should be considered to mitigate these effects. The use of available remote sensing data and techniques in combination with statistical models represents a valuable tool for developing, monitoring, and refining such strategies.

Funder

Ministerio de Economía, Fomento y Turismo

Horizon 2020 Framework Programme

H2020 Marie Skłodowska-Curie Actions

La Caixa Foundation’s doctoral fellowship programme INPhINIT

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3