Abstract
In the context of climate change and rapid urbanization, flood disaster loss caused by extreme rainstorm events is becoming more and more serious. An accurate assessment of flood disaster loss has become a key issue. In this study, extreme rainstorm scenarios with 50- and 100-year return periods based on the Chicago rain pattern were designed. The dynamic change process of flood disaster loss was obtained by using a 1D–2D coupled model, Hazard Rating (HR) method, machine learning, and ArcPy script. The results show that under extreme rainstorm events, the direct economic loss and affected population account for about 3% of the total GDP and 16% of the total population, respectively, and built-up land is the main disaster area. In addition, the initial time and the peak time of flood disaster loss increases with an increasing flood hazard degree and decreases with the increase in the return period. The total loss increases with the increase in the return period, and the unit loss decreases with the increase in the return period. Compared with a static assessment, a dynamic assessment can better reveal the development law of flood disaster loss, which has great significance for flood risk management and the mitigation of flood disaster loss.
Funder
Chinese National Key Research and Development Program
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献