Remote Sensing Image Target Detection: Improvement of the YOLOv3 Model with Auxiliary Networks

Author:

Qu Zhenfang,Zhu Fuzhen,Qi Chengxiao

Abstract

Remote sensing image target detection is widely used for both civil and military purposes. However, two factors need to be considered for remote sensing image target detection: real-time and accuracy for detecting targets that occupy few pixels. Considering the two above issues, the main research objective of this paper is to improve the performance of the YOLO algorithm in remote sensing image target detection. The reason is that the YOLO models can guarantee both detection speed and accuracy. More specifically, the YOLOv3 model with an auxiliary network is further improved in this paper. Our model improvement consists of four main components. Firstly, an image blocking module is used to feed fixed size images to the YOLOv3 network; secondly, to speed up the training of YOLOv3, DIoU is used, which can speed up the convergence and increase the training speed; thirdly, the Convolutional Block Attention Module (CBAM) is used to connect the auxiliary network to the backbone network, making it easier for the network to notice specific features so that some key information is not easily lost during the training of the network; and finally, the adaptive feature fusion (ASFF) method is applied to our network model with the aim of improving the detection speed by reducing the inference overhead. The experiments on the DOTA dataset were conducted to validate the effectiveness of our model on the DOTA dataset. Our model can achieve satisfactory detection performance on remote sensing images, and our model performs significantly better than the unimproved YOLOv3 model with an auxiliary network. The experimental results show that the mAP of the optimised network model is 5.36% higher than that of the original YOLOv3 model with the auxiliary network, and the detection frame rate was also increased by 3.07 FPS.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3