Extracting Frequent Sequential Patterns of Forest Landscape Dynamics in Fenhe River Basin, Northern China, from Landsat Time Series to Evaluate Landscape Stability

Author:

Zhang Yue,Liu Xiangnan,Yang Qin,Liu Zhaolun,Li Yu

Abstract

The forest landscape pattern evolution can reveal the intensity and mode of action of human–land relationships at different times and in different spaces, providing scientific support for regional ecological security, human settlement health, and sustainable development. In this study, we proposed a novel method for analyzing the dynamics of landscape patterns. First, patch density (PD), largest patch index (LPI), landscape shape index (LSI), and contiguity index (CI) were used to identify the types of forest spatial patterns. The frequent sequential pattern mining method was used to detect the frequent subsequences from the time series of landscape pattern types from 1991 to 2020 and further evaluate the forest landscape stability of the Fenhe River Basin in China. The results show that different frequent sequence patterns have conspicuous spatial and temporal differences, which describe the evolution processes and stability changes during a certain period of forest evolution and play an important role in the analysis of forest dynamics. The proportion of the disturbed regions to the total forest area exhibited a downward trend. The long-term evolution pattern indicates that there are many evolution processes and trends in the forest at the same time, showing an aggregation distribution law. Compared with 2016, the forest landscape has become complete in 2020, and the overall stability of the Fenhe River Basin has improved. This study can provide scientific support to land managers and policy implementers and offer a new perspective for studying forest landscape pattern changes and evaluating landscape stability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3