Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model

Author:

Xu LuORCID,Zhang HongORCID,Wang ChaoORCID,Wei Sisi,Zhang Bo,Wu FanORCID,Tang Yixian

Abstract

The elimination of hunger is the top concern for developing countries and is the key to maintain national stability and security. Paddy rice occupies an essential status in food supply, whose accurate monitoring is of great importance for human sustainable development. As one of the most important paddy rice production countries in the world, Thailand has a favorable hot and humid climate for paddy rice growing, but the growth patterns of paddy rice are too complicated to construct promising growth models for paddy rice discrimination. To solve this problem, this study proposes a large-scale paddy rice mapping scheme, which uses time-series Sentinel-1 data to generate a convincing annual paddy rice map of Thailand. The proposed method extracts temporal statistical features of the time-series SAR images to overcome the intra-class variability due to different management practices and modifies the U-Net model with the fully connected Conditional Random Field (CRF) to maintain the edge of the fields. In this study, 758 Sentinel-1 images that covered the whole country from the end of 2018 to 2019 were acquired to generate the annual paddy rice map. The accuracy, precision, and recall of the resultant paddy rice map reached 91%, 87%, and 95%, respectively. Compared to SVM classifier and the U-Net model based on feature selection strategy (FS-U-Net), the proposed scheme achieved the best overall performance, which demonstrated the capability of overcoming the complex cultivation conditions and accurately identifying the fragmented paddy rice fields in Thailand. This study provides a promising tool for large-scale paddy rice monitoring in tropical production regions and has great potential in the global sustainable development of food and environment management.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3