A Novel Self-Adaptive Cooperative Coevolution Algorithm for Solving Continuous Large-Scale Global Optimization Problems

Author:

Vakhnin AlekseiORCID,Sopov EvgeniiORCID

Abstract

Unconstrained continuous large-scale global optimization (LSGO) is still a challenging task for a wide range of modern metaheuristic approaches. A cooperative coevolution approach is a good tool for increasing the performance of an evolutionary algorithm in solving high-dimensional optimization problems. However, the performance of cooperative coevolution approaches for LSGO depends significantly on the problem decomposition, namely, on the number of subcomponents and on how variables are grouped in these subcomponents. Also, the choice of the population size is still an open question for population-based algorithms. This paper discusses a method for selecting the number of subcomponents and the population size during the optimization process (“on fly”) from a predefined pool of parameters. The selection of the parameters is based on their performance in the previous optimization steps. The main goal of the study is the improvement of coevolutionary decomposition-based algorithms for solving LSGO problems. In this paper, we propose a novel self-adapt evolutionary algorithm for solving continuous LSGO problems. We have tested this algorithm on 15 optimization problems from the IEEE LSGO CEC’2013 benchmark suite. The proposed approach, on average, outperforms cooperative coevolution algorithms with a static number of subcomponents and a static number of individuals.

Funder

RFBR

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3