A Hybrid Exact–Local Search Approach for One-Machine Scheduling with Time-Dependent Capacity

Author:

Valouxis Christos1,Gogos Christos2ORCID,Dimitsas Angelos2,Potikas Petros3,Vittas Anastasios2

Affiliation:

1. Department of Electrical and Computer Engineering, University of Patras, 26500 Patras, Greece

2. Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece

3. Department of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece

Abstract

Machine scheduling is a hard combinatorial problem having many manifestations in real life. Due to the schedule followed, the possibility of installations of machines operating sub-optimally is high. In this work, we examine the problem of a single machine with time-dependent capacity that performs jobs of deterministic durations, while for each job, its due time is known in advance. The objective is to minimize the aggregated tardiness in all tasks. The problem was motivated by the need to schedule charging times of electric vehicles effectively. We formulate an integer programming model that clearly describes the problem and a constraint programming model capable of effectively solving it. Due to the usage of interval variables, global constraints, a powerful constraint programming solver, and a heuristic we have identified, which we call the “due times rule”, the constraint programming model can reach excellent solutions. Furthermore, we employ a hybrid approach that exploits three local search improvement procedures in a schema where the constraint programming part of the solver plays a central role. These improvement procedures exhaustively enumerate portions of the search space by exchanging consecutive jobs with a single job of the same duration, moving cost-incurring jobs to earlier times in a consecutive sequence of jobs or even exploiting periods where capacity is not fully utilized to rearrange jobs. On the other hand, subproblems are given to the exact constraint programming solver, allowing freedom of movement only to certain parts of the schedule, either in vertical ribbons of the time axis or in groups of consecutive sequences of jobs. Experiments on publicly available data show that our approach is highly competitive and achieves the new best results in many problem instances.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3