Rethinking the Intrinsic Sensitivity of Fungi to Glyphosate

Author:

Tall Tuomas,Puigbò PereORCID

Abstract

The 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) is the central enzyme of the shikimate pathway to synthesize the three aromatic amino acids in fungi, plants, and prokaryotes. This enzyme is the target of the herbicide glyphosate. In most plants and prokaryotes, the EPSPS protein is constituted by a single domain family, the EPSP synthase (PF00275) domain, whereas in fungi, the protein is formed by a multi-domain structure from combinations of 22 EPSPS-associated domains. The most common multi-domain EPSPS structure in fungi involves five EPSPS-associated domains of the shikimate pathway. In this article, we analyze 390 EPSPS proteins of fungi to determine the extent of the EPSPS-associated domains. Based on the current classification of the EPSPS protein, most fungal species are intrinsically sensitive to glyphosate. However, complex domain architectures may have multiple responses to the herbicide. Further empirical studies are needed to determine the effect of glyphosate on fungi, taking into account the diversity of multi-domain architectures of the EPSPS. This research opens the door to novel biotechnological applications for microbial degradation of glyphosate.

Funder

Agencia Estatal de Investigacion

Publisher

MDPI AG

Subject

Applied Microbiology and Biotechnology,Biomedical Engineering,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3