Biotechnological Interventions in Tomato (Solanum lycopersicum) for Drought Stress Tolerance: Achievements and Future Prospects

Author:

Krishna Ram,Ansari Waquar AkhterORCID,Soumia P. S.,Yadav Akhilesh,Jaiswal Durgesh KumarORCID,Kumar Sudhir,Singh Achuit Kumar,Singh Major,Verma Jay PrakashORCID

Abstract

Tomato production is severely affected by abiotic stresses (drought, flood, heat, and salt) and causes approximately 70% loss in yield depending on severity and duration of the stress. Drought is the most destructive abiotic stress and tomato is very sensitive to the drought stress, as cultivated tomato lack novel gene(s) for drought stress tolerance. Only 20% of agricultural land worldwide is irrigated, and only 14.51% of that is well-irrigated, while the rest is rain fed. This scenario makes drought very frequent, which restricts the genetically predetermined yield. Primarily, drought disturbs tomato plant physiology by altering plant–water relation and reactive oxygen species (ROS) generation. Many wild tomato species have drought tolerance gene(s); however, their exploitation is very difficult because of high genetic distance and pre- and post-transcriptional barriers for embryo development. To overcome these issues, biotechnological methods, including transgenic technology and CRISPR-Cas, are used to enhance drought tolerance in tomato. Transgenic technology permitted the exploitation of non-host gene/s. On the other hand, CRISPR-Cas9 technology facilitated the editing of host tomato gene(s) for drought stress tolerance. The present review provides updated information on biotechnological intervention in tomato for drought stress management and sustainable agriculture.

Publisher

MDPI AG

Subject

Applied Microbiology and Biotechnology,Biomedical Engineering,Biochemistry,Bioengineering,Biotechnology

Reference136 articles.

1. Species Planatarium;Linnaeus,1753

2. Genetic Diversity in Tomato (Solanum lycopersicum) and Its Wild Relatives;Bauchet;Genet. Divers. Plants,2012

3. Tomato (Solanum lycopersicum L.) in the service of biotechnology

4. Genomic designing for climate-smart tomato;Causse,2020

5. FAOSTAT Statistical Database,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3