The Identification of Bee Comb Cell Contents Using Semiconductor Gas Sensors

Author:

Bąk Beata1ORCID,Wilk Jakub1ORCID,Artiemjew Piotr2ORCID,Siuda Maciej1ORCID,Wilde Jerzy1ORCID

Affiliation:

1. Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Sloneczna 48, 10-957 Olsztyn, Poland

2. Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland

Abstract

Beekeeping is an extremely difficult field of agriculture. It requires efficient management of the bee nest so that the bee colony can develop efficiently and produce as much honey and other bee products as possible. The beekeeper, therefore, must constantly monitor the contents of the bee comb. At the University of Warmia and Mazury in Olsztyn, research is being carried out to develop methods for efficient management of the apiary. One of our research goals was to test whether a gas detector (MCA-8) based on six semiconductor sensors—TGS823, TGS826, TGS832, TGS2600, TGS2602, and TGS2603 from the company FIGARO—is able to recognize the contents of bee comb cells. For this purpose, polystyrene and wooden test chambers were created, in which fragments of bee comb with different contents were placed. Gas samples were analyzed from an empty comb, a comb with sealed brood, a comb with open brood, a comb with carbohydrate food in the form of sugar syrup, and a comb with bee bread. In addition, a sample of gas from an empty chamber was tested. The results in two variants were analyzed: (1) Variant 1, the value of 270 s of sensor readings from the sample measurement (exposure phase), and (2) Variant 2, the value of 270 s of sensor readings from the sample measurement (measurement phase) with baseline correction by subtracting the last 600 s of surrounding air measurements (flushing phase). A five-time cross-validation 2 (5xCV2) test and the Monte Carlo cross-validation 25 (trained and tested 25 times) were performed. Fourteen classifiers were tested. The naive Bayes classifier (NB) proved to be the most effective method for distinguishing individual classes from others. The MCA-8 device brilliantly differentiates an empty comb from a comb with contents. It differentiates better between an empty comb and a comb with brood, with results of more than 83%. Lower class accuracy was obtained when distinguishing an empty comb from a comb with food and a comb with bee bread, with results of less than 73%. The matrix of six TGS sensors in the device shows promising versatility in distinguishing between various types of brood and food found in bee comb cells. This capability, though still developing, positions the MCA-8 device as a potentially invaluable tool for enhancing the efficiency and effectiveness of beekeepers in the future.

Funder

National Centre for Research and Development in Poland

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3