Inland O3 Production Due to Nitrogen Dioxide Transport Downwind a Coastal Urban Area: A Neural Network Assessment

Author:

Chiacchiaretta Piero12ORCID,Aruffo Eleonora12ORCID,Mascitelli Alessandra123ORCID,Colangeli Carlo45,Palermi Sergio6ORCID,Bianco Sebastiano6,Di Carlo Piero12ORCID

Affiliation:

1. Department of Advanced Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy

2. Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy

3. National Research Council-Institute of Atmospheric Sciences and Climate (CNR-ISAC), Via del Fosso del Cavaliere 100, 00133 Rome, Italy

4. Arta Abruzzo Provincial District of Chieti, Via Spezioli 52, 66100 Chieti, Italy

5. Department of Psychological, Health and Territory Science, University of “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy

6. Arta Abruzzo Provincial District of Pescara, Viale Marconi 51, 65126 Pescara, Italy

Abstract

The tropospheric production of O3 is complex, depending on nitrogen oxides (NOx = NO + NO2), volatile organic compounds (VOCs), and solar radiation. We present a case study showing that the O3 concentration is higher in a rural area, 14 km downwind from a coastal town in Central Italy, compared with the urban environment. The hypothesis is that the O3 measured inland results from the photochemical processes occuring in air masses originating at the urban site, which is richer in NOx emissions, during their transport inland.To demonstrate this hypothesis, a feed forward neural network (FFNN) is used to model the O3 measured at the rural site, comparing the modeled O3 and the measured O3 in different scenarios, which include both input parameters related to local O3 production by photochemistry and input parameters associated with regional transport of O3 precursors. The simulation results show that the local NOx concentration is not a good input to model the observed O3 (R = 0.17); on the contrary including the wind speed and direction as input of the FFNN model, the modelled O3 is well correlated with that measured O3 (R = 0.82).

Funder

European Union—NextGenerationEU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3