Integrated Assessment of Bearing Capacity and GHG Emissions for Foundation Treatment Piles Considering Stratum Variability

Author:

Yuan Huaicen12ORCID,Shen Jun12ORCID,Zheng Xinrui12,Bao Xiaohua12ORCID,Chen Xiangsheng12,Cui Hongzhi12

Affiliation:

1. State Key Laboratory of Intelligent Geotechnics and Tunnelling, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

2. Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China

Abstract

Foundation treatment piles are crucial for enhancing the bearing capacity and stability of weak foundations and are widely utilized in construction projects. However, owing to the complexity of geological conditions, traditional construction methods fail to meet the demand for low-carbon development. To address these challenges, this study introduced a comprehensive decision-making approach that considers the impact of stratum variability on greenhouse gas (GHG) emissions and pile bearing capacity from the design phase. During the design process, the GHG emissions and bearing capacities of deep cement mixing (DCM) and high-pressure jet grouting (HPJG) piles were quantitatively assessed by analyzing the environmental and performance impacts of foundation treatment piles related to materials, transportation, and equipment usage. The results suggest that the bearing capacity of piles in shallow strata is highly susceptible to stratum variability. Using piles with a diameter of 800 mm and a length of 20 m as an example, compared with DCM piles, HPJG piles demonstrated a superior bearing capacity; however, their total GHG emissions were 6.58% higher, primarily because of the extensive use of machinery during HPJG pile construction. The GHG emissions of foundation treatment piles in shallow strata were influenced more by geological variability than those in deep strata. Sensitivity analysis revealed that the pile diameter is a critical determinant of GHG emissions and bearing capacity. Based on the bearing capacity–GHG emission optimization framework, a foundation treatment strategy that integrates overlapping and spaced pile arrangements was introduced. This innovative construction method reduced the total GHG emissions by 22.7% compared with conventional methods. These research findings contribute to low-carbon design in the construction industry.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3