Experimental Investigation on the Damage Evolution of Thermally Treated Granodiorite Subjected to Rapid Cooling with Liquid Nitrogen

Author:

Gomah Mohamed12ORCID,Wang Enyuan1,Omar Ahmed3ORCID

Affiliation:

1. School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo 11884, Egypt

3. Housing and Building National Research Center, Cairo 11511, Egypt

Abstract

In many thermal geotechnical applications, liquid nitrogen (LN2) utilization leads to damage and cracks in the host rock. This phenomenon and associated microcracking are a hot topic that must be thoroughly researched. A series of physical and mechanical experiments were conducted on Egyptian granodiorite samples to investigate the effects of liquid nitrogen cooling on the preheated rock. Before quenching in LN2, the granodiorite was gradually heated to 600 °C for two hours. Microscopical evolution was linked to macroscopic properties like porosity, mass, volume, density, P-wave velocity, uniaxial compressive strength, and elastic modulus. According to the experiment results, the thermal damage, crack density, porosity, and density reduction ratio increased gradually to 300 °C before severely degrading beyond this temperature. The uniaxial compressive strength declined marginally to 200 °C, then increased to 300 °C before monotonically decreasing as the temperature rose. On the other hand, at 200 °C, the elastic modulus and P-wave velocity started to decline significantly. Thus, 200 and 300 °C were noted in this study as two mutation temperatures in the evolution of granodiorite mechanical and physical properties, after which all parameters deteriorated. Moreover, LN2 cooling causes more remarkable physical and mechanical modifications at the same target temperature than air cooling. Through a deeper comprehension of how rocks behave in high-temperature conditions, this research seeks to avoid and limit future geological risks while promoting sustainability and understanding the processes underlying rock failure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3