Prediction of Slope Safety Factor Based on Attention Mechanism-Enhanced CNN-GRU

Author:

Da Qi1,Chen Ying1ORCID,Dai Bing1ORCID,Li Danli1ORCID,Fan Longqiang1

Affiliation:

1. School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China

Abstract

This paper proposes a new method for predicting slope safety factors that combines convolutional neural networks (CNNs), gated recurrent units (GRUs), and attention mechanisms. This method can better capture long-term dependencies, enhance the ability to model sequential data, and reduce the dependence on noisy data, thereby reducing the risk of overfitting. The goal is to improve the accuracy of slope safety factor prediction, detect potential slope stability issues in a timely manner, and take corresponding preventive and control measures to ensure the long-term stability and safety of infrastructure and promote sustainable development. The Pearson correlation coefficient is used to analyze the relationship between the target safety factor and the collected parameters. A one-dimensional CNN layer is used to extract high-dimensional features from the input data, and then a GRU layer is used to capture the correlation between parameters in the sequence. Finally, an attention mechanism is introduced to optimize the weights of the GRU output, enhance the influence of key information, and optimize the overall prediction model. The performance of the proposed model is evaluated using metrics such as the mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root-mean-square error (RMSE), and R2. The results show that the CNN-GRU-SE model outperforms the GRU, CNN, and CNN-GRU models in terms of prediction accuracy for slope safety factors, with improvements of 4%, 2%, and 1%, respectively. Overall, the research in this paper makes valuable contributions to the field of slope safety factor prediction, and the proposed method also has the potential to be extended to other time-series prediction fields, providing support for a wide range of engineering applications and further promoting the realization of sustainable development.

Funder

National Natural Science Foundation of China

Key Project of Education Department of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3