Hovenia dulcis Suppresses the Growth of Huh7-Derived Liver Cancer Stem Cells by Inducing Necroptosis and Apoptosis and Blocking c-MET Signaling

Author:

Kwon Mikyoung1ORCID,Jung Hye Jin123ORCID

Affiliation:

1. Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea

2. Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea

3. Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Republic of Korea

Abstract

Liver cancer stem cells (LCSCs) contribute to the initiation, metastasis, treatment resistance, and recurrence of hepatocellular carcinoma (HCC). Therefore, exploring potential anticancer agents targeting LCSCs may offer new therapeutic options to overcome HCC treatment failure. Hovenia dulcis Thunberg (HDT), a tree from the buckthorn family found in Asia, exhibits various biological activities, including antifatigue, antidiabetic, neuroprotective, hepatoprotective, and antitumor activities. However, the therapeutic effect of HDT in eliminating LCSCs remains to be confirmed. In this study, we evaluated the inhibitory activity of ethanol, chloroform, and ethyl acetate extracts from HDT branches on the growth of Huh7-derived LCSCs. The ethyl acetate extract of HDT (EAHDT) exhibited the most potent inhibitory activity against the growth of Huh7 LCSCs among the three HDT extracts. EAHDT suppressed the in vitro self-renewal ability of Huh7 LCSCs and reduced tumor growth in vivo using the Huh7 LCSC-transplanted chick embryo chorioallantoic membrane model. Furthermore, EAHDT not only arrested the cell cycle in the G0/G1 phase but also induced receptor-interacting protein kinase 3/mixed-lineage kinase domain-like protein-mediated necroptosis and caspase-dependent apoptosis in Huh7 LCSCs in a concentration-dependent manner. Furthermore, the growth inhibitory effect of EAHDT on Huh7 LCSCs was associated with the downregulation of c-MET-mediated downstream signaling pathways and key cancer stemness markers. Based on these findings, we propose that EAHDT can be used as a new natural drug candidate to prevent and treat HCC by eradicating LCSCs.

Funder

Ministry of Education

Brain Korea 21 Project, Republic of Korea

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3