Real-Time Dynamics of Water Transport in the Roots of Intact Maize Plants in Response to Water Stress: The Role of Aquaporins and the Contribution of Different Water Transport Pathways

Author:

Suslov Maksim1,Daminova Amina1,Egorov Juluskhan1

Affiliation:

1. Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia

Abstract

Using an original methodological and technical approach, we studied the real-time dynamics of radial water transfer in roots and transpiration rate in intact maize plants in response to water stress. It was shown that the response of maize plants to water stress, induced by 10% PEG 6000, was accompanied by changes in the intensity and redistribution of water transfer along different pathways of radial water transport in the roots. It was shown that during the first minutes of water stress impact, the intensity of transcellular and symplastic water transport in the roots decreased with a parallel short-term increase in the transpiration rate in leaves and, presumably, in apoplastic transport in roots. Further, after a decrease in transpiration rate, the intensity of transcellular and symplastic water transport was restored to approximately the initial values and was accompanied by parallel upregulation of some PIP aquaporin genes in roots and leaves, changes in aquaporin localization in root tissues, and changes in xylem sap pH. Under water stress conditions, cell-to-cell water transport in roots becomes dominant, and aquaporins contribute to the simultaneous regulation of water transport in roots and shoots under water stress.

Funder

Russian Science Foundation

government assignment for the FRC Kazan Scientific Center of RAS

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3