Wave Propagation Characteristics and Compaction Status of Subgrade during Vibratory Compaction

Author:

Yao Junkai1,Yue Mao2,Ma Hongsheng3,Yang Changwei2

Affiliation:

1. State Key Laboratory for Track Technology of High-Speed Railway, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China

2. MOE Key Laboratory of High-Speed Railway Engineering, College of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

3. Sichuan Highway Planning Survey Design and Research Institute, Chengdu 610041, China

Abstract

Vibratory compaction status has a significant influence on the construction quality of subgrade engineering. This study carried out field experiments to study the propagation characteristics of the vertical vibration wave in the soil field along the traveling direction of the vibratory roller. The propagation coefficients of the peak acceleration at different positions and compacting rounds are compared in both the time and frequency domains. The compaction status is estimated in the form of dynamic modulus of deformation (Evd) obtained by plate load tests. The experiment results show that the propagation coefficient of peak acceleration is affected by the traveling speed, excitation amplitude, and frequency of the vibratory roller, as well as the compacting rounds. An exponential relationship between the wave amplitudes of the fundamental mode and higher-order modes is revealed. The amplitude of the fundamental wave is maximum at the speed of 3 km/h, whereas the amplitudes of higher-order waves have a maximum of 1.5 km/h. The influences of compaction rounds on the average value of Evd are also investigated to provide a practical reference for engineering construction.

Funder

Sichuan Transportation Science and Technology Project

China Academy of Railway Sciences Corporation Limited Foundation

National Natural Fund Youth Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3