Development of a Low-Molecular-Weight Filtrate Reducer with High-Temperature Resistance for Drilling Fluid Gel System

Author:

Liu Fengbao123,Sun Jinsheng12,Huang Xianbin12ORCID,Geng Yuan4

Affiliation:

1. National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China

2. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

3. PetroChina Tarim Oilfield Company, Korla 841000, China

4. China Petroleum Engineering Technology Research Institute Co., Ltd., Beijing 102200, China

Abstract

Currently, conventional polymeric filtrate reducers with high-temperature resistance for use in drilling fluids have high molecular weights, which greatly affects the rheological properties. Therefore, to address the challenges in regulating the rheology and filtration performance of high-density drilling fluids at high temperatures, it is essential to develop low-molecular-weight filtrate reducers with high-temperature resistance. In this study, a low-molecular-weight filtrate reducer with high-temperature resistance (LMF) was prepared via free radical polymerization from acrylamide and 2-acrylamido-2-methyl-1-propanesulfonic acid as monomers, tertiary dodecyl mercaptan as a chain transfer agent, and ammonium persulfate as the initiator. LMF was then characterized by infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography. The obtained filtrate reducer exhibits a weight-average molecular weight (Mw) of 3819 and an initial thermal decomposition temperature of 300.7 °C, indicating good thermal stability. The effects of LMF dosage, temperature, and NaCl dosage on the rheology and filtration performance of mud samples were also investigated, and the mechanism of action was revealed by zeta potential, particle size distribution, scanning electron microscopy, and adsorption measurements. The results reveal that LMF increases the mud sample viscosity and reduces its filtration. For example, the filtration of the mud sample with 2 wt% LMF was 7.2 mL, a reduction of 70% compared to that of a blank mud sample. Further, after aging at 210 °C for 16 h, the filtration of the same sample was 11.6 mL, and that of a mud sample with 2 wt% LMF and 35 wt% NaCl after aging at 180 °C for 16 h was 22 mL. Overall, we have reported a scheme to prepare a low-molecular-weight filtrate reducer with high-temperature resistance and superior filtrate-reducing effects, laying the foundation for the investigation and development of low-molecular-weight filtrate reducers.

Funder

Scientific research and technology development projects of CNPC

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3