The Effects of Pectin–Honey Hydrogel in a Contaminated Chronic Hernia Model in Rats

Author:

Cerullo Anna1ORCID,Giusto Gessica1,Maniscalco Lorella1ORCID,Nebbia Patrizia1ORCID,von Degerfeld Mitzy Mauthe1ORCID,Serpieri Matteo1ORCID,Vercelli Cristina1ORCID,Gandini Marco1ORCID

Affiliation:

1. Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini, 5, Grugliasco, 10095 Turin, Italy

Abstract

Incisional hernia is a frequent complication after abdominal surgery. A previous study on rats evaluated the use of a Pectin–Honey Hydrogel (PHH)-coated polypropylene (PP) mesh for the healing of acute hernias. However, there are no studies investigating the use of PHH in association with PP mesh in chronic contaminated hernia. The aims of this study are to assess the effectiveness of PHH in promoting abdominal hernia repaired with PP mesh and in counteracting infection. Twenty Sprague Dawley male rats were enrolled and a full thickness defect was made in the abdominal wall. The defect was repaired after 28 days using a PP mesh, and a culture medium (Tryptone Soy Broth, Oxoid) was spread onto the mesh to contaminate wounds in both groups. The rats were randomly assigned to a treated or untreated group. In the treated group, a PHH was applied on the mesh before skin closure. At euthanasia—14 days after surgery—macroscopical, microbiological and histopathological evaluations were performed, with a score attributed for signs of inflammation. An immunohistochemical investigation against COX-2 was also performed. Adhesions were more severe (p = 0.0014) and extended (p = 0.0021) in the untreated group. Bacteriological results were not significantly different between groups. Both groups showed moderate to severe values (score > 2) in terms of reparative and inflammatory reactions at histopathological levels. The use of PHH in association with PP mesh could reduce adhesion formation, extension and severity compared to PP mesh alone. No differences in terms of wound healing, contamination and grade of inflammation were reported between groups.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3