Chitosan Hydrogels Crosslinked with Oxidized Sucrose for Antimicrobial Applications

Author:

Fujita Sayaka1,Takeda Hijiri1,Noda Junki1,Wakamori Haruki12,Kono Hiroyuki1ORCID

Affiliation:

1. Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan

2. Hokkaido Soda Co., Ltd., Numanohata 134-122, Tomakomai 059-1364, Hokkaido, Japan

Abstract

Oxidized sucrose (OS) reacts with amino-group-containing polysaccharides, including chitosan, without catalyst, resulting in hydrogels entirely composed of carbohydrates. The presence of imine bonds with low structural stabilities and unreacted aldehydes in the structures of these hydrogels hinder their application as biomaterials. Therefore, herein, the chitosan hydrogels (CTSGs) obtained after the crosslinking of chitosan with OS were reduced using sodium borohydride to convert imine bonds to secondary amines and aldehydes to alcohols. The structures of CTSGs were comprehensively characterized using Fourier transform infrared and 13C nuclear magnetic resonance spectroscopies, and the results implied that the degree of crosslinking (CR) depended on the OS feed amount used during CTSG preparation. The properties of CTSGs were significantly dependent on CR; with an increase in CR, the thermal stabilities and dynamic moduli of CTSGs increased, whereas their swelling properties decreased. CTSGs exhibited antimicrobial properties against the gram-negative bacterium Escherichia coli, and their performances were also dependent on CR. The results indicated the potentials of CTSGs completely based on carbohydrates as antimicrobial hydrogels for various medical and pharmaceutical applications. We believe that this study will contribute to the development of hydrogels for application in the food, medical, and pharmaceutical fields.

Funder

JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE (JSPS) KAKENHI

JST SATREPS

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3