Transformation of Glass Fiber Waste into Mesoporous Zeolite-Like Nanomaterials with Efficient Adsorption of Methylene Blue

Author:

Tsai Cheng-Kuo,Horng Jao-Jia

Abstract

Recycling and reusing glass fiber waste (GFW) has become an environmental concern, as the means of disposal are becoming limited as GFW production increases. Therefore, this study developed a novel, cost-effective method to turn GFW into a mesoporous zeolite-like nanomaterial (MZN) that could serve as an environmentally benign adsorbent and efficient remover of methylene blue (MB) from solutions. Using the Taguchi optimizing approach to hydrothermal alkaline activation, we produced analcime with interconnected nanopores of about 11.7 nm. This MZN had a surface area of 166 m2 g−1 and was negatively charged with functional groups that could adsorb MB ranging from pH 2 to 10 and all with excellent capacity at pH 6.0 of the maximum Langmuir adsorption capacity of 132 mg g−1. Moreover, the MZN adsorbed MB exothermically, and the reaction is reversible according to its thermodynamic parameters. In sum, this study indicated that MZN recycled from glass fiber waste is a novel, environmentally friendly means to adsorb cation methylene blue (MB), thus opening a gateway to the design and fabrication of ceramic-zeolite and tourmaline-ceramic balls and ceramic ring-filter media products. In addition, it has environmental applications such as removing cation dyes and trace metal ions from aqueous solutions and recycling water.

Funder

Ministry of Science and Technology (MOST), Taiwan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3