Genetic Diversity, Structure, and Differentiation of Pinus sylvestris L. Populations in the East European Plain and the Middle Urals

Author:

Sboeva Yana,Chertov NikitaORCID,Nechaeva YuliaORCID,Valeeva Alena,Boronnikova SvetlanaORCID,Kalendar RuslanORCID

Abstract

Genetic diversity is important for the long-term survival of species and plays a critical role in their conservation. To manifest the adaptive potential, it is necessary to preserve the allelic diversity of populations, including both typical and region-specific alleles. Molecular genetic analysis of 22 populations of Scotch pine (Pinus sylvestris L.; Pinaceae) in 10 subjects of the Russian Federation in the East European Plain and the Middle Urals was carried out. Molecular genetic analysis of 22 populations of P. sylvestris revealed 182 polymorphic PCR fragments. The studied populations are characterized by a medium level of genetic diversity. A high subdivision coefficient (GST) of the studied populations was established; the intensity was 0.559. At the same time, the level of subdivision differed for different regions; for the populations from the Middle Urals, it was 15.5% (GST = 0.155), and for the populations from the East European Plain, it was 55.8% (GST = 0.558). The dendrogram of genetic similarity shows five clusters of the studied populations of P. sylvestris according to their geographical location. The populations from the East European Plain are mostly characterized by typicality, while the populations from the Middle Urals, on the contrary, are more specific in gene pools. The use of the coefficient of genetic originality to identify populations with typical and specific alleles allows for solving the problem of selecting populations for the conservation of forest genetic resources. The data obtained on genetic diversity, and the structure of populations growing in areas of active logging, are important for determining the geographical origin of plant samples, which is an integral part of the control of illegal logging.

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3