Abstract
Heat sinks are commonly used for cooling electronic devices and high-power electrical systems. The ever-increasing performance of electronic systems together with miniaturization calls for better heat dissipation. Therefore, the heat sink materials should not only have high thermal conductivities, low densities, and cost, but also have coefficients of thermal expansion matching to those of semiconductor chips and ceramic substrates. As traditional materials fail to meet these requirements, new composite materials have been developed with a major focus on metal matrix composites (MMCs). MMCs can be tailored to obtain the desired combination of properties by selecting proper metallic matrix and optimizing the size and type, volume fraction, and distribution pattern of the reinforcements. Hence, the current review comprehensively summarizes different studies on enhancing the thermal performance of metallic matrices using several types of reinforcements and their combinations to produce composites. Special attention is paid to the types of commonly used metallic matrices and reinforcements, processing techniques adopted, and the effects of each of these reinforcements (and their combinations) on the thermal properties of the developed composite. Focus is also placed on highlighting the significance of interfacial bonding in achieving optimum thermal performance and the techniques to improve interfacial bonding.
Funder
King Fahd University of Petroleum and Minerals
Subject
General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献