Estimating Patient-Level Uncertainty in Seizure Detection Using Group-Specific Out-of-Distribution Detection Technique

Author:

Wong Sheng1ORCID,Simmons Anj1ORCID,Villicana Jessica Rivera2ORCID,Barnett Scott1

Affiliation:

1. Applied Artificial Intelligence Institute, Deakin University, Burwood, VIC 3125, Australia

2. School of Computing Technologies, RMIT University, Melbourne, VIC 3000, Australia

Abstract

Epilepsy is a chronic neurological disorder affecting around 1% of the global population, characterized by recurrent epileptic seizures. Accurate diagnosis and treatment are crucial for reducing mortality rates. Recent advancements in machine learning (ML) algorithms have shown potential in aiding clinicians with seizure detection in electroencephalography (EEG) data. However, these algorithms face significant challenges due to the patient-specific variability in seizure patterns and the limited availability of high-quality EEG data for training, causing erratic predictions. These erratic predictions are harmful, especially for high-stake domains in healthcare, negatively affecting patients. Therefore, ensuring safety in AI is of the utmost importance. In this study, we propose a novel ensemble method for uncertainty quantification to identify patients with low-confidence predictions in ML-based seizure detection algorithms. Our approach aims to mitigate high-risk predictions in previously unseen seizure patients, thereby enhancing the robustness of existing seizure detection algorithms. Additionally, our method can be implemented with most of the deep learning (DL) models. We evaluated the proposed method against established uncertainty detection techniques, demonstrating its effectiveness in identifying patients for whom the model’s predictions are less certain. Our proposed method managed to achieve 87%, 89% and 75% in accuracy, specificity and sensitivity, respectively. This study represents a novel attempt to improve the reliability and robustness of DL algorithms in the domain of seizure detection. This study underscores the value of integrating uncertainty quantification into ML algorithms for seizure detection, offering clinicians a practical tool to gauge the applicability of ML models for individual patients.

Funder

Deakin University Postgraduate Research Scholarship

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3