KD-Net: Continuous-Keystroke-Dynamics-Based Human Identification from RGB-D Image Sequences

Author:

Dai Xinxin1ORCID,Zhao Ran1,Hu Pengpeng2ORCID,Munteanu Adrian1

Affiliation:

1. Department of Electronics and Informatics, Vrije Universiteit Brussel, 1050 Brussels, Belgium

2. Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 5FB, UK

Abstract

Keystroke dynamics is a soft biometric based on the assumption that humans always type in uniquely characteristic manners. Previous works mainly focused on analyzing the key press or release events. Unlike these methods, we explored a novel visual modality of keystroke dynamics for human identification using a single RGB-D sensor. In order to verify this idea, we created a dataset dubbed KD-MultiModal, which contains 243.2 K frames of RGB images and depth images, obtained by recording a video of hand typing with a single RGB-D sensor. The dataset comprises RGB-D image sequences of 20 subjects (10 males and 10 females) typing sentences, and each subject typed around 20 sentences. In the task, only the hand and keyboard region contributed to the person identification, so we also propose methods of extracting Regions of Interest (RoIs) for each type of data. Unlike the data of the key press or release, our dataset not only captures the velocity of pressing and releasing different keys and the typing style of specific keys or combinations of keys, but also contains rich information on the hand shape and posture. To verify the validity of our proposed data, we adopted deep neural networks to learn distinguishing features from different data representations, including RGB-KD-Net, D-KD-Net, and RGBD-KD-Net. Simultaneously, the sequence of point clouds also can be obtained from depth images given the intrinsic parameters of the RGB-D sensor, so we also studied the performance of human identification based on the point clouds. Extensive experimental results showed that our idea works and the performance of the proposed method based on RGB-D images is the best, which achieved 99.44% accuracy based on the unseen real-world data. To inspire more researchers and facilitate relevant studies, the proposed dataset will be publicly accessible together with the publication of this paper.

Funder

Innoviris

Fonds Wetenschappelijk Onderzoek

FWO

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3