Open Source IIoT Solution for Gas Waste Monitoring in Smart Factory

Author:

Waters Mark,Waszczuk Pawel,Ayre Rodney,Dreze Alain,McGlinchey Don,Alkali Babakalli,Morison Gordon

Abstract

Rapid development of smart manufacturing techniques in recent years is influencing production facilities. Factories must both keep up with smart technologies as well as upskill their workforce to remain competitive. One of the recent concerns is how businesses can contribute to environmental sustainability and how to reduce operating costs. In this article authors present a method of measuring gas waste using Industrial Internet of Things (IIoT) sensors and open-source solutions utilised on a brownfield production asset. The article provides a result of an applied research initiative in a live manufacturing facility. The design followed the Reference Architectural Model for Industry 4.0 (RAMI 4.0) model to provide a coherent smart factory system. The presented solution’s goal is to provide factory supervisors with information about gas waste which is generated during the production process. To achieve this an operational technology (OT) network was installed and Key Performance Indicators (KPIs) dashboards were designed. Based on the information provided by the system, the business can be more aware of the production environment and can improve its efficiency.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Industrial Internet-of-Things (IIoT) Open Architecture for Information and Decision Support Systems in Scientific Field Campaigns;Sensors;2024-09-12

2. Design and Implementation of IOT Based Garbage Monitoring System;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

3. Cloud Computing Solutions for Smart Factories Scalability and Collaboration;Emerging Technologies in Digital Manufacturing and Smart Factories;2024-02-23

4. Selected Issues, Methods, and Trends in the Energy Consumption of Industrial Robots;Energies;2024-01-29

5. A Low-Cost Remote Asset Monitoring Solution Through Energy Consumption;2023 16th International Conference on Developments in eSystems Engineering (DeSE);2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3