Abstract
The quantum effect on the Wigner time-delay and distribution for the polarization scattering in a semiclassical dense plasma is explored. The partial wave analysis is applied for a partially ionized dense plasma to derive the phase shift for the polarization interaction. The Wigner time-delay and the Wigner distribution are derived for the electron–atom polarization interaction including the effects of quantum-mechanical characteristic and plasma screening. In this work, we show that the Wigner time-delay and the Wigner distribution for the polarization interaction can be suppressed by the quantum effect. The Wigner time-delay and the Wigner distribution are also significantly suppressed by the increase of plasma shielding. The variation of the Wigner time-delay and the Wigner distribution function due to quantum screening is discussed.
Subject
General Physics and Astronomy