Development of a Novel RT-qPCR Detecting Method of Covert Mortality Nodavirus (CMNV) for the National Proficiency Test in Molecular Detection

Author:

Wang Wei,Liu ShuangORCID,Yao Liang,Xia Jitao,Xu Tingting,Wang Chong,Li ChenORCID,Zhang QingliORCID

Abstract

Covert mortality nodavirus (CMNV), the pathogen of viral covert mortality disease (VCMD), has caused serious economic losses of shrimp aquaculture in Southeast Asian countries and China in the past decade. In view of that the rapid and accurate laboratory detection of CMNV plays a major role in the effective control of the spread of VCMD. The national proficiency test (NPT) for the detection of covert mortality nodavirus (CMNV) started in China from 2021. In this study, a novel TaqMan real-time reverse transcription quantitative PCR (RT-qPCR) detection method for CMNV with higher sensitivity than previous reports was established based on specific primers and probe designing from the conserved regions of the CMNV coat protein gene for using molecular detection of CMNV in NPT. The optimized RT-qPCR reaction program was determined as reverse transcription at 54.9 °C for 15 min and denaturation at 95 °C for 1 min, followed by 40 cycles including denaturation at 95 °C for 10 s, and annealing and extension at 54.9 °C for 25 s. The detection limit of the newly developed RT-qPCR method was determined to be as low as 2.15 copies of CMNV plasmids template per reaction, with the correlation coefficient (R2) at above 0.99. The new method showed no cross reaction with the six common aquatic animal pathogens and could be finished in one hour, which represents a rapid detection method that can save 50% detection time versus the previously reported assay. The CMNV TaqMan probe based RT-qPCR method developed in present study supplies a novel sensitive and specific tool for both the rapid diagnosing and quantitating of CMNV in NPT activities and in the farmed crustaceans, and will help practitioners in the aquaculture industry to prevent and control VCMD effectively.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3