A Multichannel Data Fusion Method Based on Multiple Deep Belief Networks for Intelligent Fault Diagnosis of Main Reducer

Author:

Ye Qing,Liu Changhua

Abstract

Aiming at the problems of poor efficiency of the intelligent fault diagnosis method of the main reducer and the poor effectiveness of multichannel data fusion, this paper proposes a multichannel data fusion method based on deep belief networks and random forest fusion for fault diagnosis. Multiple deep belief networks (MDBNs) are constructed to obtain deep representative features from multiple modalities of multichannel data. Random forest can fuse deep representative features achieved from MDBNs to construct the model of multiple deep belief networks fusion (MDBNF). The proposed method is applied to fault diagnosis of the main reducer and evaluation of the performance. Multiple deep belief network model fusions (MD BN F) are constructed to improve the multichannel data fusion effect. Single sensory data, multichannel data, and two intelligent models based on support vector machine and deep belief networks are used as comparison in the experiments. The results indicate that the classification accuracy of the test set collected by sensor 1 and sensor 2 is 88.35% and 88.73%, respectively. The comparison results show that the method has good convergence. The data fusion of the proposed diagnostic model can effectively improve the correlation between the collected vibration signals and the failure mode, thereby improving the diagnostic performance by nearly 8%, representing improved diagnostic accuracy.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3