Abstract
Aiming at the problems of poor efficiency of the intelligent fault diagnosis method of the main reducer and the poor effectiveness of multichannel data fusion, this paper proposes a multichannel data fusion method based on deep belief networks and random forest fusion for fault diagnosis. Multiple deep belief networks (MDBNs) are constructed to obtain deep representative features from multiple modalities of multichannel data. Random forest can fuse deep representative features achieved from MDBNs to construct the model of multiple deep belief networks fusion (MDBNF). The proposed method is applied to fault diagnosis of the main reducer and evaluation of the performance. Multiple deep belief network model fusions (MD BN F) are constructed to improve the multichannel data fusion effect. Single sensory data, multichannel data, and two intelligent models based on support vector machine and deep belief networks are used as comparison in the experiments. The results indicate that the classification accuracy of the test set collected by sensor 1 and sensor 2 is 88.35% and 88.73%, respectively. The comparison results show that the method has good convergence. The data fusion of the proposed diagnostic model can effectively improve the correlation between the collected vibration signals and the failure mode, thereby improving the diagnostic performance by nearly 8%, representing improved diagnostic accuracy.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献