Rayleigh-Bénard Convection of Paramagnetic Liquid under a Magnetic Field from Permanent Magnets

Author:

Wada KengoORCID,Kaneda Masayuki,Suga KazuhikoORCID

Abstract

The convection control is important in terms of the heat transfer enhancement and improvement of the applied devices and resultant products. In this study, the convection control by a magnetic field from block permanent magnets is numerically investigated on the Rayleigh-Bénard convection of paramagnetic fluid. To enhance the magnetic force from the available permanent magnets, pairs of alternating-pole magnets are employed and aligned near the bottom heated wall. The lattice Boltzmann method is employed for the computation of the heat and fluid flow with the consideration of buoyancy and magnetothermal force on the working fluid. It is found that, since the magnetic force at the junction of pair magnets becomes strong remarkably and in the same direction as the gravity, descending convection flow is locally enhanced and the pair of symmetrical roll cells near the magnet junction becomes longitudinal. The local heat transfer corresponds to the affected roll cell pattern; locally enhanced at the magnet junctions and low heat transfer area is shifted aside the magnet outer edge. The averaged Nusselt number on the hot wall also increases proportionally to the magnetic induction but it is saturated at high magnetic induction. This suggests the roll cell pattern is no more largely affected at extremely-high magnetic induction.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3