Confidence Intervals for the Mixture Transition Distribution (MTD) Model and Other Markovian Models

Author:

Berchtold AndréORCID

Abstract

The Mixture Transition Distribution (MTD) model used for the approximation of high-order Markov chains does not allow a simple calculation of confidence intervals, and computationnally intensive methods based on bootstrap are generally used. We show here how standard methods can be extended to the MTD model as well as other models such as the Hidden Markov Model. Starting from existing methods used for multinomial distributions, we describe how the quantities required for their application can be obtained directly from the data or from one run of the E-step of an EM algorithm. Simulation results indicate that when the MTD model is estimated reliably, the resulting confidence intervals are comparable to those obtained from more demanding methods.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference32 articles.

1. Bootstrap Validation of the Estimated Parameters in Mixture Models Used for Clustering;Taushanov;J. Soc. Fr. Stat.,2019

2. Hidden Markov Models for Time Series: An Introduction Using R;Zucchini,2009

3. Discrete Time Markov Chains with R. The R Journal. R Package Version 0.6.9.7https://journal.r-project.org/archive/2017/RJ-2017-036/index.html

4. Simultaneous Confidence Intervals and Sample Size Determination for Multinomial Proportions

5. Confidence intervals for hidden Markov model parameters

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3