Abstract
Early detection of cancer increases the probability of recovery. This paper presents an intelligent decision support system (IDSS) for the early diagnosis of cancer based on gene expression profiles collected using DNA microarrays. Such datasets pose a challenge because of the small number of samples (no more than a few hundred) relative to the large number of genes (in the order of thousands). Therefore, a method of reducing the number of features (genes) that are not relevant to the disease of interest is necessary to avoid overfitting. The proposed methodology uses the information gain (IG) to select the most important features from the input patterns. Then, the selected features (genes) are reduced by applying the grey wolf optimization (GWO) algorithm. Finally, the methodology employs a support vector machine (SVM) classifier for cancer type classification. The proposed methodology was applied to two datasets (Breast and Colon) and was evaluated based on its classification accuracy, which is the most important performance measure in disease diagnosis. The experimental results indicate that the proposed methodology is able to enhance the stability of the classification accuracy as well as the feature selection.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference38 articles.
1. Central Nervous System Tumors;Walker,2017
2. American Society of Clinical Oncology (ASCO)
https://www.cancer.net/cancer-types/central-nervous-system-childhood/view-all
3. Cancer statistics, 2020
4. A Review on Clinical Decision Support Systems in Healthcare
/paper/A-review-on-clinical-decision-support-systems-in-Al-Badareen-Selamat/cb1e1c668f6e0def2f893b3669f5e9766033f258
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献