An Automated Smart EPQ-Based Inventory Model for Technology-Dependent Products under Stochastic Failure and Repair Rate

Author:

Asghar IqraORCID,Kim Jong SooORCID

Abstract

With the ever-growing technology development, high-tech products such as mobile phones, computers, electromagnetic devices and smart devices are facing high design and production modification requirements with relatively shorter life cycles. For instance, every forthcoming smart phone goes out of production in a shorter period after its launch, followed by its next generation. The design of high-tech products requires high investments in smart and automated manufacturing technology to ensure higher production efficiency. For high-tech products with short life spans, the manufacturing performance-quality variable is an important design parameter that affects system reliability, production efficiency and manufacturing costs. Major performance-quality factors of a manufacturing system which affect productivity and reliability of the manufacturing process are discussed in this research. The study investigates an integrated smart production maintenance model under stochastic manufacturing reliability for technology dependent demand and variable production rate. The smart unit production cost is a function of manufacturing reliability and controllable production rate, as a manufacturing system can be operated at different production rates within designed limits μ ϵ [ μ m i n , μ m a x ] . Manufacturing reliability is increased through investment in smart manufacturing technology and resources. The integrated smart production maintenance model is formulated under general failure and repair time distributions and the optimal production maintenance policy is investigated under specific failure and repair time distributions. A mathematical model is developed to optimize the manufacturing quality-performance parameter, variable production rate, per unit technology investment and production lot size. The total cost function is optimized through the Khun–Tucker method. The mathematical model is also validated with numerical analysis, comparative study, and sensitivity analysis for model key parameters.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3