Livschitz Theorem in Suspension Flows and Markov Systems: Approach in Cohomology of Systems

Author:

Laureano Rosário D.ORCID

Abstract

It is presented and proved a version of Livschitz Theorem for hyperbolic flows pragmatically oriented to the cohomological context. Previously, it is introduced the concept of cocycle and a natural notion of symmetry for cocycles. It is discussed the fundamental relationship between the existence of solutions of cohomological equations and the behavior of the cocycles along periodic orbits. The generalization of this theorem to a class of suspension flows is also discussed and proved. This generalization allows giving a different proof of the Livschitz Theorem for flows based on the construction of Markov systems for hyperbolic flows.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference9 articles.

1. Some homology properties of Y-systems;Livšic;Math. Notes U.S.S.R. Acad. Sci.,1971

2. COHOMOLOGY OF DYNAMICAL SYSTEMS

3. Markov partitions for anosov flows onn-dimensional manifolds

4. Symbolic Dynamics for Hyperbolic Flows

5. The Implicit Function Theorem;Krantz,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Anosov Closing Lemma to Global Data of Cohomological Nature;European Journal of Pure and Applied Mathematics;2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3