A Semi-Supervised Tri-CatBoost Method for Driving Style Recognition

Author:

Liu Weirong,Deng Kunyuan,Zhang Xiaoyong,Cheng Yijun,Zheng ZhiyongORCID,Jiang Fu,Peng JunORCID

Abstract

Driving style recognition plays a key role in ensuring driving safety and improving vehicle traffic efficiency. With the development of sensing technology, data-driven methods are more widely uesd to recognize driving style. However, adequately labeling data is difficult for supervised learning methods, while the classification accuracy is not sufficiently approved for unsupervised learning methods. This paper proposes a new driving style recognition method based on Tri-CatBoost, which takes CatBoost as base classifier and effectively utilizes the semi-supervised learning mechanism to reduce the dependency on data labels and improve the recognition ability. First, statistical features were extracted from the velocity, acceleration and jerk signals to fully characterize the driving style. The kernel principal component analysis was used to perform nonlinear feature dimension reduction to eliminate feature coupling. CatBoost is an ensemble of symmetric decision trees whose symmetry structure endows it fewer parameters, faster training and testing, and a higher accuracy. Then, a Tri-Training strategy is employed to integrate the base CatBoost classifiers and fully exploit the unlabeled data to generate pseudo-labels, by which the base CatBoost classifiers are optimized. To verify the effectiveness of the proposed method, a large number of experiments are performed on the UAH DriveSet. When the labeling ratio is 50%, the macro precision of Tri-CatBoost is 0.721, which is 15.7% higher than that of unsupervised K-means, 1.6% higher than that of supervised GBDT, 3.7% higher than that of Self-Training, 0.7% higher than that of Co-training, 1.5% higher than that of random forest, 6.7% higher than that of decision tree, and 4.0% higher than that of multilayer perceptron. The macro recall of Tri-CatBoost is 0.744, which is also higher than other methods. The experimental results fully demonstrate the superiority of this work in reducing label dependency and improving recognition performance, which indicates that the proposed method has broad application prospects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3