Abstract
T-spherical fuzzy set is a recently developed model that copes with imprecise and uncertain events of real-life with the help of four functions having no restrictions. This article’s aim is to define some improved algebraic operations for T-SFSs known as Einstein sum, Einstein product and Einstein scalar multiplication based on Einstein t-norms and t-conorms. Then some geometric and averaging aggregation operators have been established based on defined Einstein operations. The validity of the defined aggregation operators has been investigated thoroughly. The multi-attribute decision-making method is described in the environment of T-SFSs and is supported by a comprehensive numerical example using the proposed Einstein aggregation tools. As consequences of the defined aggregation operators, the same concept of Einstein aggregation operators has been proposed for q-rung orthopair fuzzy sets, spherical fuzzy sets, Pythagorean fuzzy sets, picture fuzzy sets, and intuitionistic fuzzy sets. To signify the importance of proposed operators, a comparative analysis of proposed and existing studies is developed, and the results are analyzed numerically. The advantages of the proposed study are demonstrated numerically over the existing literature with the help of examples.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献