Author:
Li Guoliang,Zhang Hongbin,Zhao Ji
Abstract
In this paper, to further improve the filtering performance and enhance the poor tracking capability of the conventional combined step-size affine projection sign algorithm (CSS-APSA) in system identification, we propose a simplified CSS-APSA (SCSS-APSA) by applying the first-order Taylor series expansion to the sigmoidal active function (of which the independent variable is symmetric) of CSS-APSA. SCSS-APSA has lower computational complexity, and can achieve comparable, or even better filtering performance than that of CSS-APSA. In addition, we propose a modification of the sigmoidal active function. The modified sigmoidal active function is a form of scaling transformation based on the conventional one. Applying the modified function to the CSS-APSA, we can obtain the modified CSS-APSA (MCSS-APSA). Moreover, the extra parameter of MCSS-APSA provides the power to accelerate the convergence rate of CSS-APSA. Following the simplification operations of SCSS-APSA, the computational complexity of MCSS-APSA can also be reduced. Therefore, we get the simplified MCSS-APSA (SMCSS-APSA). Simulation results demonstrate that our proposed algorithms are able to achieve a faster convergence speed in system identification.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献