Numerical Simulation of Particle-Laden Flow and Soot Layer Formation in Porous Filter

Author:

Yamamoto Kazuhiro,Yagasaki Shota

Abstract

So far, diesel particulate filters (DPFs) have been widely used to collect diesel particulates including soot in the exhaust after-treatment. However, as the soot is continuously collected in the porous filter, the exhaust pressure (pressure drop) increases. To optimize the filter design for reducing its pressure drop, we need a numerical simulation. In this study, we simulated the particle-laden flow across the DPF. Structure of SiC-DPF was obtained by an X-ray CT technique. We conducted the numerical simulation by changing the soot aggregation diameter (simply called soot size), and evaluated the time-variation of the pressure drop. For discussing the soot deposition process, the contributions of the Brownian diffusion and the interception effect were separately estimated. Especially, we focused on the soot deposition region which could affect the pressure drop, together with the soot cake permeability and the soot packing density. Results show that, as the soot size is smaller, more soot is trapped. As a result, the shift from the depth filtration to the surface filtration is observed earlier. Therefore, for discussing the pressure drop, it is important to consider where the soot deposition occurs as well as the deposited soot mass in the filter.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3