Catalytic Direct Decomposition of NOx Using Non-Noble Metal Catalysts

Author:

Shukla M. K.,Chauhan Balendra V. S.ORCID,Verma SnehaORCID,Dhar Atul

Abstract

Nitrogen oxides (NOx) gases, such as nitrous oxide (N2O), nitrogen oxide (NO), and nitrogen dioxide (NO2), are considered the most hazardous exhausts exhaled by industries and stationary and non-stationary application engines. Investigation of catalytic decomposition of NO has been carried out on copper ion exchanged with different bases, such as COK12, Nb2O5, Y-zeolite, and ZSM5. The catalytic decomposition of NO is widely accepted as an excellent method for the abatement of NO. However, the catalyst that achieves the highest reactivity in terms of NO decomposition is still a matter of research. The present paper aims to extend the research on the reactivity of non-noble metal-based catalysts using the direct decomposition method to remove NO from diesel engine exhaust. The reactivity of catalysts was observed in a quartz fixed bed reactor of 10 mm diameter placed in a furnace maintained at a temperature of 200 °C to 600 °C. The flow of NO was controlled by a mass flow controller, and the gas chromatography technique was used to observe the reactivity of the catalysts. Analysis showed that adding Cu to COK12, Nb2O5, Y-zeolite, and ZSM5 supports resulted in a rise in NO decomposition compared to stand-alone supports. Further experimental trials on the performance of Cu-ZSM5 at varying flow rates of NO showed that the NO decomposition activity of the catalyst was higher at lower flow rates of NO.

Funder

CSIR

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3