Effect of Lignin Type as an Additive on Rheology and Adhesion Properties of Asphalt Binder

Author:

Ghabchi RouzbehORCID

Abstract

Utilization of alternative asphalt binders and additives from renewable sources, given the scale and the impact of the asphalt pavement industry, is an important step toward a sustainable future for the surface transportation infrastructure. Among several sources available for harvesting sustainable construction materials, bio-based materials from agricultural feedstock are known to be one of the most reliable, renewable, environmentally friendly, and economically feasible solutions to achieve this goal. Lignin, one of the most abundant materials in nature, is the byproduct of several industries, specifically pulp processing and biofuel production facilities. Given its physical properties, the use of lignin as a partial replacement for petroleum-based asphalt binder has been studied and proven promising. However, lignin’s properties vary depending on its source and processing techniques. Therefore, incorporating lignin in asphalt binders can result in different mechanical properties, depending on its type and chemical composition. The present study was undertaken to evaluate the effect of three different lignin types, when used as an asphalt binder modifier, on the rheological properties of the asphalt binder, aging characteristics, and its adhesion to different aggregates. This study’s findings showed that, when incorporated in an asphalt binder at the same amount, different lignin types have significantly different effects on asphalt binder blends’ rheological, aging, and adhesion properties. Different rheological, aging, and adhesion properties of the binders result in different mechanical characteristics in asphalt mixes containing lignin-modified asphalt binders.

Funder

POET LLC

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3