Comparison of Intra-Event Characteristics of Hydrogen and Oxygen Stable Isotopes between Rainfall and Throughfall and the Effects of Pre-Event Precipitation

Author:

Xia Chengcheng12,Liu Guodong2,Meng Yuchuan2,Chen Ke2

Affiliation:

1. School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China

2. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

Abstract

The isotopic composition of precipitation provides valuable information about its source and transportation. However, raindrops interact with vegetation before reaching the earth’s surface, leading to isotopic changes in the infiltrating water. Comparing isotopic composition between rainfall and throughfall helps to understand canopy processes and their impact on isotopic variation. Based on observational data collected during the periods of July 2019, July–August 2020, and July–August 2021 in a planted forest located in the southwest monsoon region of China, this study examines hydrogen and oxygen isotopes in rainfall and throughfall at event and intra-event scales, and investigates the effects of pre-event precipitation (PEP) on the isotopic composition. The results indicate that during the initial stage of precipitation, δ18O was enriched in rainfall and it presented a dilution effect gradually, while the d-excess exhibits a low initial value followed by an increasing trend. The difference in δ18O between throughfall and rainfall initially increased and subsequently converged around 0, whereas the difference in d-excess experiences a decreasing phase, followed by an increasing phase, and finally a decreasing phase. Canopy interception led to a lag effect during the early stage of precipitation; the forest exhibited higher water vapor content compared to open land in the intermediate stage, which reduced the degree of non-equilibrium fractionation in throughfall, and the flow pathway enhanced in the later stage. Evaporation processes become more prominent as precipitation intensity weakens. The rainfall and throughfall were influenced by distinct meteorological factors in different precipitation events, and the role of the forest canopy varied across different precipitation periods. PEP was found to augment the intercept and slope of the linear relationship between the H-O isotopic composition of throughfall and rainfall. This pre-event effect also contributes to heightened fluctuations in the δ18O and d-excess values during subsequent precipitation events. The findings contribute to understanding water dynamics, vegetation interception, and mechanisms governing water input in forested areas during precipitation events, which provides valuable insights for analyzing factors influencing water movement in forest ecosystems.

Funder

Start-up Funding from Chongqing Normal University

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3