Remediation of Sulfides in Produced Waters of the Oil and Gas Industry Using Hydrogen Peroxide

Author:

Schovan Samantha1,McEachern Grant1,Seeger Alexandria1,Nguyen Victor V.1,Burkes Bobby2,Adhikary Amitava1ORCID,Schweitzer Linda E.1ORCID

Affiliation:

1. Department of Chemistry, Oakland University, Rochester, MI 48309, USA

2. Department of Chemistry, Grambling State University, Grambling, LA 71245, USA

Abstract

Produced waters are often treated in open lagoons where hydrogen sulfide (H2S) can off gas, posing a risk to human health and the environment. The aim of this study was to optimize a treatment process using hydrogen peroxide (H2O2) to oxidize H2S while minimizing off gassing. Samples of produced water from West Texas and laboratory-prepared waters utilizing sodium sulfide (Na2S) or biogenic polysulfides were oxidized with H2O2 alone or in combination with copper or iron catalysts, sodium hydroxide (NaOH), or a commercial sulfide oxidizer, HydroPower Green™. Sulfur speciation was measured using Hach test kits for sulfide/sulfate/sulfite and Dräger tubes for headspace H2S. HydroPower Green™ (HPG) helped to reduce H2S in the headspace of water samples; some of this was pH related as NaOH also worked, but not as well as HPG. The dose of peroxide necessary to oxidize sulfides to sulfate is a function of the oxidation-reduction potential (Eh) of the water and total sulfide concentration as well as pH; approximately a 1–4:1 ratio of peroxide to sulfide concentration was needed to oxidize sulfidic waters of pH 7–10 with half-lives under 30 min. Both copper and iron catalysts reduce H2O2 demand and the half-life of H2S. Peracetic acid (PAA) and copper (II) sulfate pentahydrate (CuSO4, 5H2O) were explored as biocides for controlling sulfate-reducing bacteria (SRBs) that produce H2S. An AquaSnap (Hygenia) test kit was employed to monitor relative microbial activity in a wetland porewater containing H2S. Microbial regrowth occurred after a few days using the highest dose of PAA; these results showed that PAA was being used by bacteria as a carbon source even after the initial substantial reduction in the microbial activity. CuSO4, 5H2O at a dose of 1 ppm prevented microbial regrowth. The recommended treatment process from this research is determined by jar testing with H2O2, a base for pH control, a biocide, and possibly a metal catalyst or other co-oxidants in order to achieve oxidation of sulfides without H2S release or the precipitation of metal carbonates or oxides.

Funder

RipCord Energy Solutions LLC.

Publisher

MDPI AG

Reference35 articles.

1. Yang, M. (Oilfield Technology Magazine, 2023). Testing the waters, Oilfield Technology Magazine, pp. 41–43.

2. WPC (2015). World Petroleum Council Guide: Water Management, WPC and International Systems and Coummuniations Limited.

3. Review of Technologies for Oil and Gas Produced Water Treatment;Pendashteh;J. Hazard. Mater.,2009

4. Erickson, B.E. (2024, January 04). Wastewater from fracking: Growing disposal challenge or untapped resource?. Chemical & Engineering News, Available online: https://cen.acs.org/environment/water/Wastewater-fracking-Growing-disposal-challenge/97/i45.

5. OSHA (2024, June 20). Hydrogen Sulfide—Overview, Available online: https://www.osha.gov/hydrogen-sulfide.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3