Affiliation:
1. School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
2. Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
3. Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Abstract
Microplastic fibre (MPF) pollution is a pressing concern that demands urgent attention. These tiny synthetic textile fibres can be found in various ecosystems, including water and air, and pose significant environmental risks. Despite their size (less than 5 mm), they can harm aquatic and terrestrial organisms and human health. Studies have demonstrated that these imperceptible pollutants can contaminate marine environments, thereby putting marine life at risk through ingestion and entanglement. Additionally, microplastic fibres can absorb toxins from the surrounding water, heightening their danger when consumed by aquatic organisms. Traces of MPFs have been identified in human food chains and organs. To effectively combat MPF pollution, it is crucial to understand how these fibres enter ecosystems and their sources. Primary sources include domestic laundry, where synthetic textile fibres are released into wastewater during washing. Other significant sources include industrial effluents, breakdown of plastic materials, and atmospheric deposition. Additionally, MPFs can be directly released into the environment by improperly disposing of consumer products containing these fibres, such as non-woven hygienic products. A comprehensive approach is necessary to address this pressing issue, including understanding the sources, pathways, and potential risks of MPFs. Immediate action is required to manage contamination and mitigate MPF pollution. This review paper provides a systematic literature analysis to help stakeholders prioritise efforts towards reducing MPFs. The key knowledge gaps identified include a lack of information regarding non-standardised test methodology and reporting units, and a lack of information on manufacturing processes and products, to increase understanding of life cycle impacts and real hotspots. Stakeholders urgently need collaborative efforts to address the systematic changes required to tackle this issue and address the proposed opportunities, including targeted government interventions and viable strategies for the industry sector to lead action.
Funder
Hong Kong Polytechnic University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献