Sustainable Materials with Enhanced Mechanical Properties Based on Industrial Polyhydroxyalkanoates Reinforced with Organomodified Sepiolite and Montmorillonite

Author:

García-Quiles ,Cuello ,Castell

Abstract

Microplastics have become one of the greatest environmental challenges worldwide. To turn this dramatic damage around, EU regulators now want to ensure that plastic itself is fully recyclable or biodegradable. The aim of the present work is to develop a biobased and biodegradable biocomposite based on commercial polyhydroxyalkanoates (PHAs) and nanoclays, with the objective of achieving a reduction of rancid odour while avoiding any loss in thermomechanical properties, thus tackling two key disadvantages of PHAs. This research aims at completely characterising the structural, thermal and mechanical behaviour of the formulations developed, understanding the compatibility mechanisms in order to be able to assess the best commercial combinations for industrial applications in the packaging and automotive sectors. We report the development of nine nanobiocomposite materials based on three types of commercial PHA matrices: a linear poly(3-hydroxybutyrate) (P3HB); two copolymers based on poly(3-hydroxybutyrate)-co-poly(4-hydroxybutyrate) (P3HB-co-P4HB); and nanoclays, which represent a different polar behaviour. Dispersion achieved is highly relevant compared with literature results. Our findings show impressive mechanical enhancements, in particular for P3HB reinforced with sepiolite modified via aminosilanes.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference81 articles.

1. Plastics Europe, Plastics—the Facts 2018https://www.plasticseurope.org/es/resources/publications/619-plastics-facts-2018

2. Plastics Europe, Plastics—The Facts 2015https://www.plasticseurope.org/93-plastics-facts-2015

3. https://www.cnbc.com/2018/04/16/climate-change-china-bans-import-of-foreign-waste-to-stop-pollution.html

4. https://www.reuters.com/article/us-eu-environment/eu-targets-recycling-as-china-bans-plastic-waste-imports-idUSKBN1F51SP

5. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions,2018

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3