Controlling the Crack Propagation Path of the Veil Interleaved Composite by Fusion-Bonded Dots

Author:

Chen GuangchangORCID,Zhang Jindong,Liu Gang,Chen Puhui,Guo Miaocai

Abstract

This study investigated the effect of the fusion-bonded dots of veil interleaves on the crack propagation path of the interlaminar fracture of continuous carbon fiber reinforced epoxy resin. Two thin fiber layers (i.e., nylon veil (NV) with fusion-bonded dots and Kevlar veil (KV) physically stacked by fibers) were used to toughen composites as interleaves. Result shows that the existence of fusion-bonded dots strongly influenced the crack propagation and changed the interlaminar fracture mechanism. The Mode I fracture path of the nylon veil interleaved composite (NVIC) could propagate in the plane where the dots were located, whereas the path of the Kevlar veil interleaved composite (KVIC) randomly deflected inside the interlayer without the pre-cracking of the dots. The improvement of Mode I toughness was mainly based on fiber bridging and the resulting fiber breakage and pull-out. Fiber breakage was often observed for NVIC, whereas fiber pull-out was the main mechanism for KVIC. For the Mode II fracture path, the fusion-bonded NV dots guided the fracture path largely deflected inside the interlayer, causing the breakage of tough nylon fibers. The fracture path of the physically stacked KVIC occurred at one carbon ply/interlayer interface and only slightly deflected at fiber overlapped regions. Moreover, the fiber pull-out was often observed.

Funder

Aeronautical Science Foundation of China

the National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3