Super-Toughened Poly(lactic Acid) with Poly(ε-caprolactone) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate by Reactive Melt Blending

Author:

Hou Ao-Lin,Qu Jin-Ping

Abstract

In recent years, poly(lactic acid) (PLA) has attracted more and more attention as one of the most promising biobased and biodegradable polymers. However, the inherent brittleness significantly limits its wide application. Here, ternary blends of PLA, poly(ε-caprolactone) (PCL) with various amounts of ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) terpolymer were fabricated through reactive melt blending in order to improve the toughness of PLA. The effect of different addition amounts of EMA-GMA on the mechanical properties, interfacial compatibility and phase morphology of PLA/PCL blends were studied. The reactions between the epoxy groups of EMA-GMA and carboxyl and hydroxyl end groups of PLA and PCL were investigated thorough a Fourier transform infrared (FT-IR). The miscibility and thermal behavior of the blends were studied through a dynamic mechanical analysis (DMA), differential scanning calorimetric (DSC) and X-ray diffraction (XRD). The phase morphology and impact fracture surface of the blends were also investigated through a scanning electron microscope (SEM). With the addition of 8 phr EMA-GMA, a PLA/PCL (90 wt %:10 wt %)/EMA-GMA ternary blend presenting a suitable multiple stacked phase structure with an optimum interfacial adhesion exhibited an elongation at break of 500.94% and a notched impact strength of 64.31 kJ/m2 with a partial break impact behavior. Finally, the toughening mechanism of the supertough PLA based polymers have been established based on the above analysis.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3