Abstract
In order to explore flame retardant systems with higher efficiency in rigid polyurethane foams (RPUFs), aluminum hydroxide (ATH), [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester (BH) and expandable graphite (EG) were employed in RPUF for constructing ternary synergistic flame retardant systems. Compared with binary BH/EG systems and aluminum oxide (AO)/BH/EG, ATH/BH/EG with the same fractions in RPUFs demonstrated an increase in the limited oxygen index value, a decreased peak value of heat release rate, and a decreased mass loss rate. In particular, it inhibited smoke release. During combustion, ATH in ternary systems decomposed and released water, which captured the phosphorus-containing products from pyrolyzed BH to generate polyphosphate. The polyphosphate combined with AO from ATH and the expanded char layer from EG, forming a char layer with a better barrier effect. In ternary systems, ATH, BH, and EG can work together to generate an excellent condensed-phase synergistic flame retardant effect.
Subject
Polymers and Plastics,General Chemistry
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献