The Preparation and Properties of Terephthalyl-Alcohol-Modified Phenolic Foam with High Heat Aging Resistance

Author:

Ge TiejunORCID,Hu Xiaoqi,Tang Kaihong,Wang Dongqi

Abstract

In this experiment, terephthalyl alcohol was used as a modifier to modify phenol under both acidic and alkaline conditions to obtain modified phenols with different molecular structures. Subsequently, the modified phenols reacted with paraformaldehyde in an alkaline environment. After foaming and curing, a modified phenolic foam with high heat aging resistance was obtained. The molecular structure was characterized via Fourier transform infrared spectrometry (FT-IR) and nuclear magnetic resonance spectroscopy (13C NMR). The results showed that two different structures of phenolic resin can be successfully prepared under different conditions of acid and alkali. The modified phenolic foam was tested by thermogravimetric analysis. In addition, the modified phenolic foam was tested for mass change rate, dimensional change rate, powdering rate, water absorption rate, and compressive strength before and after aging. The results show that the modified phenolic foam has excellent performance. After heat aging for 24 h, the mass loss rate of the modified phenolic foam obtained by acid catalysis was as low as 4.5%, the pulverization rate was only increased by 3.2%, and the water absorption of the modified phenolic foam increased by 0.77%, which is one-third that of the phenolic foam. Compared with the phenolic foam, the modified phenolic foam shows good heat aging resistance.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3