Effect of Graphene oxide or Functionalized Graphene Oxide on the Copolymerization Kinetics of Styrene/n-butyl Methacrylate

Author:

Tsagkalias Ioannis,Vlachou Afrodite,Verros George,Achilias DimitrisORCID

Abstract

Nanocomposite materials based on copolymers of styrene and n-butyl methacrylate with either graphene oxide (GO) or functionalized graphene oxide (F-GO) were synthesized using the in-situ bulk radical copolymerization technique. Reaction kinetics was studied both experimentally and theoretically using a detailed kinetic model also taking into account the effect of diffusion-controlled phenomena on the reaction kinetic rate constants. It was found that the presence of GO results in lower polymerization rates accompanied by the synthesis of copolymers having higher average molecular weights. In contrast, the presence of F-GO did not seem to significantly alter the conversion vs time curves, whereas it results in slightly lower average molecular weights. The first observation was attributed to side reactions of the initiator primary radicals with the hydroxyl groups on the surface of GO, resulting in lower initiator efficiency, whereas the second to grafted structures formed from copolymer macromolecules on the F-GO surface. The copolymerization model predictions including MWD data were found to be in satisfactory agreement with the experimental data. At least four adjustable parameters were employed and their best-fit values were provided.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3